Christo Wilson Talk

A PhD defence is a great way to bring interesting people to Denmark, and Piotr’s defense on June 13th is no exception. This time we’re lucky to have recent NSF Career grant recipient Christo Wilson from Northeastern University visiting. Christo’s work includes auditing algorithms, security and privacy, and online social networks. Much of his work focuses on using measured data to analyze and understand complex phenomena on the Web. In many cases, he has leveraged the knowledge gained from measurements of the Web to build systems that improve security, privacy, and transparency for users – and getting lots of nice press coverage in the process.

  • Time: Monday June 13th, 10am
  • Location: DTU, Building 321, 1st floor lab space
Title: Caught Red Handed: Tracing Information Flows Between Ad Exchanges Using Retargeted Ads
Abstract: Numerous surveys have shown that Web users are seriously concerned about the loss of privacy associated with online tracking. Alarmingly, these surveys also reveal that people are also unaware of the amount of data sharing that occurs between ad exchanges, and thus underestimate the privacy risks associated with online tracking.
In reality, the modern ad ecosystem is fueled by a flow of user data between trackers and ad exchanges. Although recent work has shown that ad exchanges routinely perform cookie matching with other exchanges, these studies are based on brittle heuristics that cannot detect all forms of information sharing, especially under adversarial conditions.
In this study, we develop a methodology that is able to detect client- and server-side flows of information between arbitrary ad exchanges. Our key insight is to leverage retargeted ads as a mechanism for identifying information flows. Intuitively, our methodology works because it relies on the semantics of how exchanges serve ads, rather than focusing on specific cookie matching mechanisms. Using crawled data on 35,448 ad impressions, we show that our methodology can successfully categorize four different kinds of information sharing between ad exchanges, including cases were existing heuristic methods fail.

Data Stories Winner

Ulf Aslak Jensen, who’s writing his M.Sc thesis in my group (well, actually he’s at the Weizman institute working with Uri Alon, but that’s another story) has just won Science Magazine‘s Data Stories competition with the following video about a cool visualization he created based on SensibleDTU data.

Ulf has gotten lots of nice coverage, both internationally

And in the local Danish Press

Nice work!!

Dave Choffnes visit

Next Thursday, we’re lucky to have Dave Choffnes visiting the lab. David Choffnes is an assistant professor in the College of Computer and Information Science at Northeastern University. His research is primarily in the areas of distributed systems and networking, with a recent focus on mobile systems and privacy. Much of his work entails crowdsourcing measurement and performance evaluation of Internet systems by deploying software to users at the scale of tens or hundreds of thousands of users. He earned his PhD from Northwestern (not in the northwest), and completed a postdoc at the University of Washington (in the northwest) prior to joining Northeastern (both in the northeast and northwest). He sees no reason why this should at all be confusing. He is a co-author of three textbooks, and his research has been supported by the NSF, Google, the Data Transparency Lab, VidScale, M-Lab, and a Computing Innovations Fellowship.

  • Time: Thursday May 19th, 11am
  • Location: DTU, Building 321, 1st floor lab space

Title: ReCon: Identifying and Controlling Privacy Leaks from Mobile Devices

Abstract: Mobile systems have become increasingly popular for providing ubiquitous Internet access; however, recent studies demonstrate that software running on these systems extensively tracks and leaks users’ personally identifiable information (PII). I argue that these privacy leaks persist in large part because mobile users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties.


In this talk, I describe ReCon, a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. Specifically, our key observation is that PII leaks must occur over the network, so we implement our system in the network using a software middlebox. We then use a machine learning approach to to efficiently and accurately detect users’ PII without knowing a priori the content that is PII. Further, we develop techniques to block, obfuscate, or ignore the PII leak, by displaying leaks via a visualization tool and letting the user decide how the system should act on transmitted PII. I discuss the design and implementation of the system and evaluate its methodology with measurements from controlled experiments and flows from a user study with more than 100 participants. In addition to revealing and controlling PII leaks, we are using our machine-learning-based techniques to automatically identify and block malware based on network behaviors.